数学由来简介

数学由来介绍

数学,起源于人类早期生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。下面是关于数学的由来的内容,欢迎阅读!

数学的由来

数学,我国古代叫算术,后来叫算学,又叫数学。近几十年来才确定统一叫做数学。古代“算”字有三种写法:筹、笄、算。从字形的结构,可以看到事物演变的一些痕迹。

许慎《说文解字》对这几个字作如下解释:“笄”,“长六寸,计历数者,从竹从弄言常弄乃不误也”。“算,数也,从竹上具,读若”。“示示”,或“算”原来都一种竹制的工具,是几寸长的竹签,也叫筹码。用来记数、计算或卜卦。摆弄这些“算”,有一套技术基学问,自然就叫做“算术”或“算学”。

我国盛产竹子,是世界上最善于利用竹子的国家。用竹子做计算工具,使我国古代数学带有许多和西方不同的特色。“示示”由两个“示”字合成。《说文》解释“示”字说:“示,神事也。”“二”是古文的上字,三竖(后来写成一竖两点)是日、月、星。古人以为天上有神灵,神的表示是从上面下来的。矫同时也用来占筮,因此“示示”字带有迷信色彩,是不奇怪的。

“算”字是什么时候开始使用的?李约瑟认为在甲骨文或金文中从未发现过这个算字,因此它出现的年代不可能早于公元前3世纪。无论如何,“算术”这个名称在汉代已经通行。正式使用,是在《九章算术》一书中。它的涵义是指当时的数学,和现代算术的意义不同。宋、元两代,我国数学发展居世界前列。那时“算学”和“数学”这两个词是并用的。

算学、数学并用的情况,一直延续了几百年,1935年“中国数学会名词审查委员会”仍主张两词并用。直到1939年6月,为了划一起见,才确定用“数学”,而不用“算学”。

数学名称的由来

古希腊人在数学中引进了名称,概念和自我思考,他们很早就开始猜测数学是如何产生的。虽然他们的猜测仅是匆匆记下,但他们几乎先占有了猜想这一思考领域。古希腊人随意记下的东西在19世纪变成了大堆文章,而在20世纪却变成了令人讨厌的陈辞滥调。 在现存的资料中,希罗多德(Herodotus,公元前484--425年)是第一个开始猜想的人。他只谈论了几何学,他对一般的数学概念也许不熟悉,但对土地测量的准确意思很敏感。作为一个人类学家和一个社会历史学家,希罗多德指出,古希腊的几何来自古埃及,在古埃及,由于一年一度的洪水淹没土地,为了租税的目的,人们经常需要重新丈量土地;他还说:希腊人从巴比伦人那里学会了日晷仪的使用,以及将一天分成12个时辰。希罗多德的这一发现,受到了肯定和赞扬。认为普通几何学有一个辉煌开端的推测是肤浅的。

柏拉图关心数学的各个方面,在他那充满奇妙幻想的神话故事《费德洛斯篇》中,他说:

故事发生在古埃及的洛克拉丁(区域),在那里住着一位老神仙,他的名字叫赛斯(Theuth),对于赛斯来说,朱鹭是神鸟,他在朱鹭的帮助下发明了数,计算、几何学和天文学,还有棋类游戏等。

柏拉图常常充满了奇怪的幻想,原因是他不知道自己是否正亚里士多德最后终于用完全概念化的语言谈论数学了,即谈论统一的、有着自己发展目的的数学。在他的《形而上学》(Meta-physics)第1卷第1章中,亚里士多德说:数学科学或数学艺术源于古埃及,因为在古埃及有一批祭司有空闲自觉地致力于数学研究。亚里士多德所说的是否是事实还值得怀疑,但这并不影响亚里士多德聪慧和敏锐的观察力。在亚里士多德的书中,提到古埃及仅仅只是为了解决关于以下问题的争论:

1.存在为知识服务的知识,纯数学就是一个最佳的例子:

2.知识的发展不是由于消费者购物和奢华的需要而产生的。亚里士多德这种“天真”的观点也许会遭到反对;但却驳不倒它,因为没有更令人信服的观点。

就整体来说,古希腊人企图创造两种“科学”的方***,一种是实体论,而另一种是他们的数学。亚里士多德的逻辑方法大约是介于二者之间的,而亚里士多德自己认为,在一般的意义上讲他的方法无论如何只能是一种辅助方法。古希腊的实体论带有明显的巴门尼德的“存在”特征,也受到赫拉克利特“理性”的轻微影响,实体论的特征仅在以后的斯多葛派和其它希腊作品的翻译中才表现出来。数学作为一种有效的方***远远地超越了实体论,但不知什么原因,数学的名字本身并不如“存在”和“理性”那样响亮和受到肯定。然而,数学名称的产生和出现,却反映了古希腊人某些富于创造的特性。下面我们将说明数学这一名词的来源。

“数学”一词是来自希腊语,它意味着某种‘已学会或被理解的东西’或“已获得的知识”,甚至意味着“可获的东西”, “可学会的东西”,即“通过学习可获得的知识”,数学名称的这些意思似乎和梵文中的同根词意思相同。甚至伟大的辞典编辑人利特雷(E.Littre 也是当时杰出的古典学者),在他编辑的法语字典(1877年)中也收入了“数学”一词。牛津英语字典没有参照梵文。公元10世纪的拜占庭希腊字典“Suidas”中,引出了“物理学”、“几何学”和“算术”的词条,但没有直接列出“数学”—词。

“数学”一词从表示一般的知识到专门表示数学专业,经历一个较长的过程,仅在亚里士多德时代,而不是在柏拉图时代,这一过程才完成。数学名称的专有化不仅在于其意义深远,而在于当时古希腊只有“诗歌”一词的专有化才能与数学名称的专有化相媲美。“诗歌”原来的意思是“已经制造或完成的某些东西”,“诗歌”一词的专有化在柏拉图时代就完成了。而不知是什么原因辞典编辑或涉及名词专有化的知识问题从来没有提到诗歌,也没有提到诗歌与数学名称专有化之间奇特的相似性。但数学名称的专有化确实受到人们的注意。

首先,亚里士多德提出, “数学”一词的专门化使用是源于毕达哥拉斯的想法,但没有任何资料表明对于起源于爱奥尼亚的自然哲学有类似的思考。其次在爱奥尼亚人中,只有泰勒斯(公元前640?--546年)在“纯”数学方面的成就是可信的,因为除了第欧根尼?拉尔修(Diogenes Laertius)简短提到外,这一可信性还有一个较迟的而直接的数学来源,即来源于普罗克洛斯(Proclus)对欧几里得的评注:但这一可信性不是来源于亚里士多德,尽管他知道泰勒斯是一个“自然哲学家”;也不是来源于早期的希罗多德,尽管他知道塞利斯是一个政治、军事战术方面的“爱好者”,甚至还能预报日蚀。以上这些可能有助于解释为什么在柏拉图的体系中,几乎没有爱奥尼亚的成份。赫拉克利特(公元前500--?年)有一段名言:“万物都在运动中,物无常往”, “人们不可能两次落进同一条河里”。这段名言使柏拉图迷惑了,但赫拉克赖脱却没受到柏拉图给予巴门尼德那样的尊敬。巴门尼德的实体论,从方***的角度讲,比起赫拉克赖脱的变化论,更是毕达哥拉斯数学的强有力的竞争对手。

对于毕达哥拉斯学派来说,数学是一种“生活的方式”。事实上,从公元2世纪的拉丁作家格利乌斯(Gellius)和公元3世纪的希腊哲学家波菲利(Porphyry)以及公元4世纪的希腊哲学家扬布利科斯(Iamblichus)的某些证词中看出,似乎毕达哥拉斯学派对于成年人有一个“一般的学位课程”,其中有正式登记者和临时登记者。临时成员称为“旁听者”,正式成员称为“数学家”。

这里“数学家”仅仅表示一类成员,而并不是他们精通数学。毕达哥拉斯学派的精神经久不衰。对于那些被阿基米德神奇的发明所深深吸引的人来说,阿基米德是唯一的独特的数学家,从理论的地位讲,牛顿是一个数学家,尽管他也是半个物理学家,一般公众和新闻记者宁愿把爱因斯坦看作数学家,尽管他完全是物理学家。当罗吉尔?培根(Roger Bacon,1214--1292年)通过提倡接近科学的“实体论”,向他所在世纪提出挑战时,他正将科学放进了一个数学的大框架,尽管他在数学上的造诣是有限的,当笛卡儿(Descartes,1596--1650年)还很年轻时就决心有所创新,于是他确定了“数学万能论”的名称和概念。然后莱布尼茨引用了非常类似的概念,并将其变成了以后产生的“符号”逻辑的基础,而20世纪的“符号”逻辑变成了热门的数理逻辑。

在18世纪,数学史的先驱作家蒙托克莱(Montucla)说,他已听说了关于古希腊人首先称数学为“一般知识”,这一事实有两种解释:一种解释是,数学本身优于其它知识领域;而另一种解释是,作为一般知识性的学科,数学在修辞学,辩证法,语法和伦理学等等之前就结构完整了。蒙托克莱接受了第二种解释。他不同意第一种解释,因为在普罗克洛斯关于欧几里得的评注中,或在任何古代资料中,都没有发现适合这种解释的确证。然而19世纪的语源学家却倾向于第一种解释,而20世纪的古典学者却又偏向第二种解释。但我们发现这两种解释并不矛盾,即很早就有了数学且数学的优越性是无与伦比的。

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

数学的起源

通过“建模”与世界打交道

大自然是一个复杂多变、险象环生的处所,栖息地的变化、掠食动物的袭击、食物的匮乏……一个有机体的生存取决于它感知周围环境的能力。但不管是野牛估量狮群的数量和块头,以便做出战斗/逃跑的决定;还是椋鸟在空中时刻与邻伴维持适当的距离,以便保持队形;或者羊群循着水草丰茂的路线觅食……所有这一切活动,按伦敦大学神经学家卡尔·菲力斯顿的说法,都意味着在做数学。

“因为数学有一种简单、节俭和对称的性质,如果你把它当作一种语言,会比其他描述世界的方法更胜一筹。从海豚到黏菌,几乎所有生命都能从数学上去理解这个世界,以便为自己的生存服务,” 他说。

现在不是有很多“建模”比赛吗?为一个复杂过程,建立一个相对简单的数学模型,然后输入参数,看看不同情况下的运行结果。那么,菲力斯顿的话其实意思就是:任何形式的生命都需要通过对其生存的环境进行“建模”,才能发挥作用。

菲力斯顿的这个看法可追溯到1970年代,当时控制论提出一项原则:为了提供有效的控制,一个机器人必须先对自己与环境的作用,建立一个数学模型,才能据此行动。此后的人工智能研究,差不多都遵循了这条原则。今天,人类能在人工智能领域取得这么大的成就,也要归功于这条原则。

既然机器人是通过“建模”与外部世界互动的,那么一个合理的推测是:生物在某种程度上也是通过“建模”跟世界打交道的。

举个例子。当一头野牛注意到一头狮子在逼近时,它就会本能地调动一个叫“逃跑/战斗”的决策机制,根据自己对狮子块头、距离远近以及对自己力量的估计,决定是逃跑还是战斗。这个决策机制,从功能上说,可看作是一个数学模型,输入“狮子块头”“距离”“自己的力量”等参数,输出“逃跑”或“战斗”的结果。任何一项参数改变,都可能导致输出结果不同。

发展出精确的数感为了纠正感官的偏差

既然是数学模型,当然就要对现实做些简化,不可能面面俱到。尤其对于生命来说,当危险临近时,迅速行动才是主要的,准确倒退居次要。譬如上述“逃跑/战斗”的模型中,考虑那三项因素大致就差不多了,至于“狮子毛色如何”,“天空会不会下雨”等因素,都可以不考虑。考虑因素太多,决策就慢下来,进而影响行动速度。

正是我们这种与世界打交道的方式,决定了我们的感官存在这样那样不尽人意的偏差。

以心理学上反映心理量和物理量之间关系的韦伯-费希纳定律为例。这条定律说:我们辨别两个感觉差别的能力,随感觉强度的增加而减弱。比如用手提重物,你很容易区分1千克和2千克,但要辨别21千克和22千克,就不那么容易了。对于亮度、音量等的辨别能力也同样如此。

让我们自豪的是,尽管人类和其他动物的感官都有着同样的偏差,但人类已经发展出识别和纠正偏差的能力。最明显的是,我们发明了数:这是一种符号系统,它让我们立即判断出(21与22)和(1与2)差距是一样的。

与生俱来的是“数觉”还是“量觉”?

那么,这种工具是怎么发展起来的呢?

长期以来,一种观点认为:我们天生就有一种对“数”的意识,就像我们天生就能意识到色彩一样。1997年,法国心理学家德阿纳提出一个假说,认为进化赋予人类和其他动物一种“数觉”,即立即觉察一堆物体数量的本能。譬如说,三颗红色的珠子会产生数“3”的感觉,正如它们能产生“红”的感觉。

支持这种本能观点的证据很多。麻省理工学院的心理学家发现,6个月大的婴儿已能在8个点和16个点的点阵之间做出区分。

还有研究显示,人类本能上具有在空间上通过虚构一条“数字线”,来表示数的倾向。比如说,我报给你一串数,请你在纸上记下。尽管我并没有吩咐你怎么去记,但你还是会按小的在左,大的在右的方式写下这些数,哪怕你是个左撇子也不例外。这是因为你在记数字时,会在纸面上不自觉地虚构一条“数字线”;在这条线上,数值从左到右要按从小到大的顺序排列。这是一种本能。

甚至有证据表明,数觉在动物中也存在(见拓展阅读“动物有数学本能吗?”)。

所以,按本能论的观点,我们天生具有“数觉”,随后以此作为“种子”,经过几千年文明的发扬光大,才有今天这么庞大复杂的数学体系。

但不久,一些研究者对这些证据提出怀疑。例如他们说,婴儿能把两列点阵区别开来,也许依靠的不是它们在数量上的差别,而是基于其他属性,比如点阵的空间位置分布或覆盖的面积等。这些线索涉及的是量,不是数;虽然量也跟数相关,但精确度上要差一些,不过因为比数更直观,似乎更有可能被婴儿利用。譬如两堆球,判断哪堆多哪堆少,总比说出每一堆的具体数目要更直观,也更容易一些。

由此,出现了一个不同的假说:我们与生俱来的不是“数觉”,而是“量觉”,即感知事物的量(如大小、强度等)的能力。

对儿童更精确的测试似乎也倾向于支持这种观点。例如,小于4岁的孩子不能理解5个橘子和5只西瓜有什么共同点——都是5。对他们而言,5只西瓜仅仅意味着比5个橘子在“量”上更多。

此外,即使教幼儿数数的动作,也不能立即传达数的意义,必须通过“量”的比较,他们才能掌握“数”的概念。这就怪不得幼儿园的老师教孩子数数,或者做加减运算,要辅以小木棍、小球之类的道具。

精确的数量感是文明发展的产物

如果我们接受后一种观点,那么,我们后来能产生精确的数量感,发明出数来精确地表示量,只能说是文明的产物了。

文化对数的认知影响之大,超乎我们的想象。以巴布亚新几内亚的Yupno人为例。他们的语言虽然并不原始,却连表示“一个比另一个大或小”的说法都没有。Yupno并不是唯一拥有不强调数的语言的人。一项对189种澳大利亚原住民语言的研究,发现其中四分之三的语言中没有表示大于3或4的数的词汇。

这暗示,今天我们大多数人所拥有的精确的数量感,是文明发展到一定度的产物,当诸如农业和贸易等需要时,它才会出现。

甚至在我们自己当中,对数的认知也深受职业、教育等这类文化因素的影响。2016年,研究人员对15名专业数学家和15名非数学家学者的大脑进行了扫描。他们发现了一个涉及数学思维的脑区;当数学家思考代数、几何和拓扑学问题时,这个脑区会被激活;但是当他们思考非数学问题时,这个脑区就不会活跃起来。而在其他学者中,不论思考数学问题还是非数学问题,这个脑区都不活跃。

这个结果表明,教育和职业所养成的习惯,已经深深改变了数学家们思考数学时的思维方式。文化的影响之巨,由此可见一斑。

文化是什么时候把我们曾经的模糊本能(“量觉”)塑造成能精确识别数的能力(“精确的数量感”)的呢?确切时间目前还不清楚。人类处理数的最早证据来自南非莱邦博山脉的博德山洞。在那里,考古学家们发现了年龄为4.4万的有缺口的骨头,其中包括狒狒的腓骨,上面刻有29个痕迹。人类学家认为,这些痕迹表明,这块骨头类似原始人的“账目棒”,是用来辅助计数的。说明那个时候人类就已经学会有意识地用符号表达和操纵数目了。

公元前4千年左右,在底格里斯-幼发拉底河谷(现在伊拉克的一个地区),出现了美索不达米亚文明。在这种文明中,计数和测量达到了新的高度。这同样跟文明的发展需要分不开。美索不达米亚人需要记录天文历法,丈量土地面积,衡量谷物收成,甚至记录重量。然后随着人类走向海洋,或者研究天空,我们开始发展导航和天文观测所需要的数学。甚至到了现代,商业的需要也仍在推动数学的发展。譬如,一些最复杂的数学正是为华尔街的股票和债券交易而开发的。

拓展阅读:动物有数学本能吗?

关于人类是否天生具有“数觉”的争论,让持肯定意见的人经常转向从动物方面寻求支持。如果我们的远亲能表现出一定的数学能力,那这就意味着我们自己对数的感觉也必定先于文化的发展。

一些动物个体被证明表现出非凡的数觉天赋。亚历克斯,一只经过训练的非洲灰鹦鹉,在80%的时间里能正确识别出2到6个物体的集合。Ai,日本灵长类动物学家训练出来的.一只黑猩猩,能做同样的事情。

但也有人争辩说,这些动物并没有掌握数的象征意义。相反,它们只是在经过上千次的训练之后,能通过联想来学习数。这和我们训练动物去做它们在野外做不到的事情没什么不同。比如在自然状态下,让大象戴着滑稽帽子一条腿站在凳上是不可想象的,而经过训练再做这类事情,就没什么可稀奇的了。

但越来越多的证据表明,动物在自然状态下也能表现出接近“数觉”的能力。20世纪90年代早期,有观察证明,狮子能区分一头狮子和三头狮子的吼声。在2017年2月的一次会议上,研究人员还报告说,一些青蛙在择偶过程中,当听到与之竞争的青蛙的叫声时,会在叫声数量上与竞争者一争高低。

这些发现表明,动物确实有一种接近“数觉”的本能。换句话说,这种本能为人类和许多其他动物共同拥有。

数学的本质

“数学是大自然的语言”

目今,人类已经建立了一座巨大的数学金字塔。在过去5千年左右的时间里,数学已经扩张到更加抽象的领域,似乎进一步脱离了周围的现实世界和普通人的理解范围。

然而,我们对宇宙的秘密了解越多,数学上的新发明就越能描述这些秘密。例如,当大卫·希尔伯特发展了一种高度抽象的代数来处理无穷多个维度而不是熟悉的空间三维时,没有人能预见到这种代数能在量子力学中得到应用。但不久之后证明,希尔伯特的这套数学——即所谓的“希尔伯特空间”——是我们理解诡秘的量子世界的关键。

数学和物理之间这种普遍存在的联系,使我们想起几个世纪前伽利略说过的一句话“数学是大自然的语言”。对今天从事自然科学研究的人来说,数学几乎是一门必备的工具。甚至长期抵制数学的生物学,也在慢慢地屈服:人们已经见证了数学在基因组学或神经科学中的广泛应用。比如,DNA双螺旋结构的发现就与一个叫“傅里叶分析”的数学工具分不开。神经生物学则越来越依赖拓扑学、图论等数学学科。

数学自身取得的辉煌成就以及它在现实中无所不在的应用,让一些人产生一种“狂妄”的看法:数学是一切,一切皆数学;宇宙是一个数学结构,它只有数学性质。这种看法与古希腊毕达哥拉斯学派“一切皆数,数是万物的本源”的神秘思想遥相呼应。

数学是发现还是发明?

历史上,人们曾为“数学是发明还是发现?”发生过激烈的争论。按“数学是一切”的观点,数学显然是“发现”而不是“发明”,因为它早已存在那儿,我们所做的只是发现而已。

但事情也许没那么简单:当问及“数学是被发明的还是被发现的?”的时候,人们往往有一种先入为主的前提,好像两者是相互排斥的。如果你发明了它,你就不会是发现了它,如此等等。但这不是一个非此即彼的命题。

想想古希腊数学家欧几里德编纂的《几何原本》,它搜集了古希腊所有的数学知识,并编纂了一条条几何定律。欧几里德把他的工作建立在一系列公理之上。这些公理既不能证明,也不能证伪,我们只能说它们是“被发明的”。其中最著名的一条就是“平行线公理”:两条平行线永不相交。随着时间的推移,从这些公理中衍生出很多的规则和关系,并被后人证明为定理。从某种意义上说,他们是“发现”了欧几里德几何学的景观。

但是几千年后,有数学家另起炉灶,决定采用新公理去发现新的几何王国。这些新公理与欧几里得的公理是矛盾的。例如,因德国数学家黎曼而得名的黎曼几何,明确依赖于“平行线可以相交”这一思想。这个非正统的出发点把我们引向了一个广阔的数学世界,爱因斯坦用其来阐述他的广义相对论。

数学能否解释自己的起源?

但是,不管我们从哪一套公理出发,数学可能不像我们所以为的那样是一套完整的思想体系。对于这一点,我们要归功于奥地利逻辑学家哥德尔的不完备性定理所提供的洞见。哥德尔证明,在任何形式的公理和定理体系里,有一些既不能证明对,也不能证明错的陈述。换句话说,有些问题数学可以问,但它永远无法回答。像欧几里得几何中的“平行线永不相交”就是一例,欧几里得几何体系自身无法提供证明。我们只能说:“暂且假设它是对的,来看看会推出什么结果……”

在这种情况下,我们说数学是普遍真理,或许还为时尚早。因为真理嘛,对的就是对的,不能说“假设它是对的”(比如上帝存在就说存在,不存在就说不存在,不能说“假设他存在”)。再者,人类迄今所建立的数学体系,也许不过是“数学丛林”的一个小角落,谁敢保证它就代表了宇宙整体呢?

当前,能不能完全用数学来描述意识,是数学面临的一个非常大的挑战。我们知道,数学本身就是人类意识的产物,现在反过来要用它去解释意识,那就意味着要数学去解释自己的起源。它能胜任吗? 如果能解释,也就算了;如果不能,那麻烦就大了。因为既然连“大自然的语言”数学都解释不了意识,那意识还能用什么来解释呢?或者反过来,迫使我们追问“难道数学真是大自然的语言吗?”

数学由来简介

转载请注明出处记得学习 » 数学由来简介

学习

元旦的由来

阅读(64)

本文为您介绍元旦的由来,内容包括元旦的由来介绍,元旦的由来详细介绍,元旦的来历简述。元旦的由来介绍导语:元旦,也被称为“新年”,是指公历的1月1日。你知道元旦的由来是什么吗?下面是为您收集整理的资料,希望对您有所帮助。元旦由来“元”

学习

元旦的由来简单介绍

阅读(63)

本文为您介绍元旦的由来简单介绍,内容包括介绍元旦的由来,关于元旦的由来简介,关于元旦的由来介绍。介绍元旦的由来元旦一词有千年历史,但元旦节却是现代才明确。以下是搜索整理一篇元旦的由来,欢迎大家阅读!中国古代元旦的由来中国的元旦

学习

关于元旦的由来简单介绍

阅读(60)

本文为您介绍关于元旦的由来简单介绍,内容包括关于元旦的由来介绍,关于元旦的由来资料,关于元旦的由来简介。关于元旦的由来介绍一年一度的元旦就要来了,每年到了这个时候大家都会趁着假期好好和家人或者朋友一起放松一下,大家每年都会过

学习

关于春节的由来简介40个字左右

阅读(75)

本文为您介绍关于春节的由来简介40个字左右,内容包括关于中国春节的由来介绍(精选),春节的由来英文介绍,春节的由来简短介绍儿童。关于中国春节的由来介绍(精选18篇)春节,即中国农历新年,俗称新春、新岁、岁旦等,口头上又称过年、过大年。春节

学习

关于春节的来历和风俗讲解

阅读(76)

本文为您介绍关于春节的来历和风俗讲解,内容包括关于春节的由来和风俗介绍,关于春节的来历和风俗简便,春节的来历和风俗简单的。关于春节的由来和风俗介绍在日常生活中,我们一定都真知道春节这个中国传统节日,那么你对于春节的由来了解吗?

学习

春节的由来和风俗

阅读(62)

本文为您介绍春节的由来和风俗,内容包括春节的由来和风俗介绍,春节的由来英文介绍,春节的由来简短介绍。春节的由来和风俗介绍新年的钟声敲响,街上鞭炮齐鸣,响声此起彼伏,家家喜气洋洋,这就代表着新的一年已经开始了。节日的热烈气氛洋溢着

学习

春节到越南旅游哪个地方更好玩

阅读(68)

本文为您介绍春节到越南旅游哪个地方更好玩,内容包括春节去越南不可错过的景点及攻略,春节期间去越南哪里旅游最好,春节去越南旅游最好攻略。春节去越南不可错过的景点及攻略导语:越南到底有什么好玩的?春节假期近在眼前了,想不想来场说走

学习

春节简介手抄报内容

阅读(74)

本文为您介绍春节简介手抄报内容,内容包括春节简介,春节简介英语,春节简介和习俗。春节简介春节是我国的传统节日之一,为大家精心搜集了一篇“春节简介”,欢迎大家参考借鉴,希望可以帮助到大家!春节,是农历正月初一,又叫阴历年,俗称“过年”。

学习

有关职业的谜语幼儿园

阅读(95)

本文为您介绍有关职业的谜语幼儿园,内容包括有关职业的谜语,职业谜语大全及答案,关于各种职业的谜语。有关职业的谜语谜语主要指暗射事物或文字等供人猜测的隐语,也可引申为蕴含奥秘的事物。下面是带来的有关职业的谜语,仅供参考。职业的

学习

职业谜语大全及答案100个

阅读(64)

本文为您介绍职业谜语大全及答案100个,内容包括职业谜语大全及答案,职业谜语大全及答案消防员,职业谜语怎么编。职业谜语大全及答案谜语主要指暗射事物或文字等供人猜测的隐语,也可引申为蕴含奥秘的'事物。谜语源自中国古代民间,历经数千

学习

职业猜谜大全及答案

阅读(65)

本文为您介绍职业猜谜大全及答案,内容包括猜谜语猜职业,职业猜谜,猜职业大全及答案。猜谜语猜职业猜谜语,主要指暗射事物或文字等供人猜测的隐语,也可引申为蕴含奥秘的事物。谜语源自中国古代民间,历经数千年的演变和发展。以下是为大家分

学习

有关动物谜语大全

阅读(72)

本文为您介绍有关动物谜语大全,内容包括有关动物谜语,有关动物谜语的英语句子,少儿动物谜语大全300个。有关动物谜语谜语主要指暗射事物或文字等供人猜测的隐语,也可引申为蕴含奥秘的事物。谜语源自中国古代民间,历经数千年的演变和发展。

学习

有关雪的谜语和答案

阅读(65)

本文为您介绍有关雪的谜语和答案,内容包括有关雪的谜语,有关雪的谜语幼儿,有关雪的谜语大全。有关雪的谜语谜语主要指暗射事物或文字等供人猜测的隐语,也可引申为蕴含奥秘的事物。谜语源自中国古代民间,历经数千年的演变和发展。它是中国

学习

职业谜语大全及答案

阅读(70)

本文为您介绍职业谜语大全及答案,内容包括关于各种职业的一些谜语,关于各种职业的谜语30字,职业谜语大全幼儿园。关于各种职业的一些谜语谜语主要指暗射事物或文字等供人猜测的隐语,也可引申为蕴含奥秘的事物。以下是收集整理的关于各种

学习

元旦的由来

阅读(64)

本文为您介绍元旦的由来,内容包括元旦的由来介绍,元旦的由来详细介绍,元旦的来历简述。元旦的由来介绍导语:元旦,也被称为“新年”,是指公历的1月1日。你知道元旦的由来是什么吗?下面是为您收集整理的资料,希望对您有所帮助。元旦由来“元”

学习

元旦的由来简单介绍

阅读(63)

本文为您介绍元旦的由来简单介绍,内容包括介绍元旦的由来,关于元旦的由来简介,关于元旦的由来介绍。介绍元旦的由来元旦一词有千年历史,但元旦节却是现代才明确。以下是搜索整理一篇元旦的由来,欢迎大家阅读!中国古代元旦的由来中国的元旦

学习

关于元旦的由来简单介绍

阅读(60)

本文为您介绍关于元旦的由来简单介绍,内容包括关于元旦的由来介绍,关于元旦的由来资料,关于元旦的由来简介。关于元旦的由来介绍一年一度的元旦就要来了,每年到了这个时候大家都会趁着假期好好和家人或者朋友一起放松一下,大家每年都会过

学习

关于春节的由来简介40个字左右

阅读(75)

本文为您介绍关于春节的由来简介40个字左右,内容包括关于中国春节的由来介绍(精选),春节的由来英文介绍,春节的由来简短介绍儿童。关于中国春节的由来介绍(精选18篇)春节,即中国农历新年,俗称新春、新岁、岁旦等,口头上又称过年、过大年。春节

学习

春节的由来和风俗

阅读(62)

本文为您介绍春节的由来和风俗,内容包括春节的由来和风俗介绍,春节的由来英文介绍,春节的由来简短介绍。春节的由来和风俗介绍新年的钟声敲响,街上鞭炮齐鸣,响声此起彼伏,家家喜气洋洋,这就代表着新的一年已经开始了。节日的热烈气氛洋溢着

学习

元旦最早的由来

阅读(63)

本文为您介绍元旦最早的由来,内容包括元旦最早的由来简介,元旦最早的由来是什么,元旦的由来简单介绍。元旦最早的由来简介简介,即简明扼要的介绍。是当事人全面而简洁地介绍情况的一种书面表达方式,它是应用写作学研究的一种日常应用文体

学习

世界各国元旦的由来

阅读(72)

本文为您介绍世界各国元旦的由来,内容包括西方元旦的由来简介,西方的重要节日是什么,各国元旦的来源。西方元旦的由来简介元旦是庆贺新年的开始,欢度元旦可说是世界各国各地区的普遍习俗。西方元旦的由来你想知道吗?下面是整理的西方元旦

学习

数学的由来简介50字

阅读(85)

本文为您介绍数学的由来简介50字,内容包括数学的由来简介,数学的由来的手抄报内容,数学的由来简介文字。数学的由来简介数学的产生和发展始终围绕着数和形这两个基本概念不断地深化和演变。以下是收集整理了数学的由来简介,供大家参考借