分数与除法的说课稿(精选5篇)
作为一名教师,编写说课稿是必不可少的,说课稿可以帮助我们提高教学效果。那么什么样的说课稿才是好的呢?以下是帮大家整理的分数与除法的说课稿(精选5篇),欢迎大家分享。
分数与除法的说课稿1
一、教材分析:
《分数与除法》是第四单元《分数的意义和性质》的教学内容。
在学生第一学段初步认识分数、体验分数产生、理解分数的意义、读写一些简单分数的基础上,学生结合具体情境,再次认识分数,大大丰富了学生的感性认识。本节教学内容重视引导学生在观察比较中发现分数与除法的关系,在此基础上探索假分数与带分数的互化方法。教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。它是学生进一步学习分数基本性质的基础。
二、教学目标:
教学目标是一节课的出发点和落脚点,对一节课起引领作用。
教学目标:
1、在具体情境中通过观察、比较、发现、理解分数与除法的关系,并会用分数表示两个数相除的商。
2、运用分数与除法的关系,探索假分数与带分数的互化方法,初步理解分数与带分数互化的算理,会正确进行互化。
教学重点:
1、掌握分数与除法的关系,会用分数表示除法的商。
2、运用分数与除法的关系,正确进行假分数与带分数的互化。
三、教法:
为了完成上述教学目标,突出重点,突破难点,我主要采用创设情境法、引导探究发现、归纳等教学方法。在探索知识本质规律处适当给予启发、指导、点拔,帮助学生完成探索知识的过程。
四、教学流程:
1、情境导入,引出新知。课件播放“分饼”情境,学生观察说出相应的除法算式和用分数表示每人分得的块数。这个环节承接了上一节课学生熟悉的分饼情境,引出“除法”与“分数”这两个教学内容的主角。
2、探究发现,归纳认知。
1、分数与除法的关系。这时教师及时将学生分饼的思维顺向发展,快速练习:
(1)、把a块饼平均分成8份,每份是多少块?
(2)、把a块饼平均分成b份,每份是多少块?
学生先写出除法算式,再用分数表示结果,教师板书:
1÷2=1/2块
9÷4=9/4块
a÷8=a/8块
a÷b=a/b块
通过这个练习完成从个别到一般的思维过渡,为充分发现分数和除法的关系创造条件。
2、归纳认知,明确关系。
(1)、学生观察思考:分数和除法有怎样的关系?
(2)、汇报发现。
板书:被除数÷除数=被除数/除数
(3)、引导思考:在除法中除数不能为0,那在分数中应该有怎样的规定呢?
学生讨论得出:分母不能为0。
板书:(除数不为0)。
3、尝试用字母表示。
4、及时练习。
2÷3=8÷7=16÷5=10÷12=
5/6=()÷()13/15=()÷()
12/7=()÷()100/6=()÷()……
(二)假分数与带分数的互化。
怎样把7/3化成带分数呢?怎样把2化成假分数?
1、学生进行小组合作学习。师出示温馨提示,引导学生合作学习。
2、检测合作学习效果。
3、师做针对性点评。
4、及时练习。
课本40页第2题。这个环节引导学生探索出假分数与带分数的互化方法,并采取边学边练的形式,使知识得到及时巩固。
三、全课小结,学生谈收获。学生总结出本课的知识点,对本节课的学习形成一个完整的认识。
板书设计:板书是一节课的缩影,我的板书就是抓住本节课的教学重点分数与除法的关系来进行设计的。
分数与除法的说课稿2
一、说教材
这部分内容,是在学生学过分数除法的意义和计算法则、分数乘法应用题的基础上进行教学的。这类应用题历来是学生学习的难点。
教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生通过方程解领会此类应用题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数应用题的能力,也有助于发展学生思维的广度。
二、说教学目标和教学重、难点
根据教材特点和学生实际我确定本节课的教学目标是:
(1)会分析较复杂的分数除法应用题数量关系。
(2)能列方程正确解答稍复杂的分数除法应用题。
(3)培养学生初步的逻辑思维能力。教学重点是:能用方程正确解答稍复杂分数除法应用题。教学难点是:确定单位“1”、分析数量关系。
三、说教法、学法
1、自主探究、寻求方法
让学生充分自主探究、寻求分数除法的解题方法。
2、设计教法体现主体
课堂设计以学生为主体,注重学生间的合作与交流各抒已见、取长补短、共同提高。
四、说过程
1、复习铺垫(分两个内容)
现价是原价的4/5;男生比女生多1/3;今年比去年少2/5;火车速度比汽车快2/9
让学生来说说等量关系,找一找单位“1”
合唱队有女生30人,男生比女生多1/3,女生有多少人?
意***:解决问题中关键是找出题目中关键句的等量关系,所以安排了这一环节,一来是回顾,二来是在这里分散难点,以便在接下来出现一个完整题目,数量关系的分析能较为自然了。
2、教学新知
改例题为男生比女生多1/3,女生有多少人?
(补充)男生比女生少1/3,女生有多少人?
比较的目的:为了让学生明白这里的等量关系不变,变的是其中的已知与未知的量,所以我们仍然可以顺着刚才的思路,把未知的量设为X,应该说学生是不会有困难的。
例题与补充题的比较是考虑到,比单位“1”多(少)几分之几的区别,数量关系不一样了,其中未知与已知的量是相同的。也可以用方程的方法来解决。
分数与除法的说课稿3
一、说教材
1、教学内容
本课是《义务教育课程标准实验教科书》(北师大版)数学五年级下册第25页到26页的内容。
2、教材分析
这节课的知识基础是分数乘法的意义和计算方法以及倒数的认识。教材中呈现了两个问题,这两个问题的共同点是都把平均分,第(1)题是平均分成2份,第(2)题是平均分成3份,第(1)题的算式是÷2,被除数的分子是能被除数整除的,而第(2)题的算式是÷3,被除数的分子是不能被3整除的。无论哪一种方法,目的都是让学生在涂一涂、算一算的过程中,借助***形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。
教学目标:
根据新课标的要求和教材的特点,结合五年级学生的认知能力,本节课我确定如下的教学目标:
知识与能力目标:理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。
过程与方法目标:通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。情感、态度与价值观目标:通过一系列“自主探究————得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。
教学重点:
定位为理解分数除法的意义,掌握分数除以整数的计算方法。
教学难点:
定位为分数除以整数计算法则的推导过程。
3、教学准备
为了更好地对本节课进行教学,课前我准备了多媒体课件、长方形纸等。
二、说教法与学法
根据新课标的要求和本节教学实际,在设计本课教学时我主要突出以下几点:
1、在注重算理和算法教学的同时,体现估算。
《数学课程标准》对计算教学有明确的要求,即淡化笔算、重视口算、加强估算。分数除以整数是学生今后继续学习的重要基础,在教材中占有重要的地位,但在现行教材中对估算意识的培养还未凸显出来。针对这一现象,我力求把培养学生的估算意识,发展学生的估算能力融入教学,在课堂上形成具体的教学行为,从而加以体现。
2、以探索为主线,鼓励学生算法多样化。
学生是课堂教学中的主体,将更多的时间、空间留给学生,是调动和发挥学生主体意识的重要途径之一。从问题的提出,就让学生主动参与到探索和交流的数学活动中来。在探索的过程中,教师尊重每一个学生的个性特征,允许不同的学生尽可能地从不同角度认识问题,采用不同的方式表达自己的想法,用不同的知识与方法解决问题。
3、让学生充分评价和反思。
在教学过程中要引导学生加以评价,加强反思。当学生探索出多种算法后,学生给予恰到好处的评价,学生就会随时深入思考,同时也能反思每一种算法是否更具有一般性,普遍性。
为了达成上述目标,在本节课中我将贯彻“以学生为主体,教师为主导,训练思维为主线”的教学原则:
1、自主探究、寻求方法
让学生充分自主探究、寻求分数除以整数的意义和计算方法。
2、设计教法体现主体
课堂设计以学生为主体,教师是领路人,注重学生间的合作与交流各抒已见、取长补短、共同提高。
3、分层练习、注重发展
练习有层次,由尝试练习到综合练习到发展练习,层层深入。
三、说教学过程
根据以上的教学理念,结合本课的特点,我把本课的教学程序设计为以下三个层次进行教学:
第一层次:教学分数除法的意义。
通过多媒体课件创设情境涂一涂,得出分数除以整数的算式,让学生理解分数除法的意义和整数除法的意义相同。
第二层次:大胆猜想分数除法的计算方法。
这个算式的特殊性在于分子能够整除整数,学生容易理解分数除法的意义并找到特殊的计算方法,因此放手让学生大胆猜想分数除法的计算方法,再利用多媒体课件操作探究,使学生理解分数的分子能被整数整除时,可直接去除;并举例操作验证这一算法。
第三层次:激发矛盾,再次探究。
让学生用探索到的方法来计算。此时学生发现分子除以整数除不尽,分子除以整数的方法不适用。知识矛盾的冲突引发学生进一步观察和思考,并再次利用多媒体课件操作探究,从特殊到一般,探索新的计算方法。
具体教学环节设计如下:
(一)旧知复习,蕴伏铺垫
复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。
1、展示问题:
(1)什么是倒数?
(2)你能举出几对倒数的例子吗?
(3)如何求一个数的倒数?
【设计意***】本节课的内容是以倒数为基础的。分数除以整数的计算方法与倒数紧密联系,因此,在引入新课之前,带领学生系统深入地复习倒数的相关知识是很有必要的。
2、展示多媒体:笑笑和淘气去买白糖。
问题1:他们每人买了两袋白糖,一共买了多少袋白糖?
问题2:这些白糖一共重2千克,每袋白糖有多重?
问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?
【设计意***】本环节设置了一个“买白糖”的具体情境,并展示了三个层层递进的问题,在帮助学生复习整数除法的同时,引出了本节课的主要内容——分数除以整数。由于设置了三个递进的问题,学生不会觉得问题3的提出很突然,并且,由于有了问题2的铺垫,列出问题3的算式也较为容易。
(二)创设情境,理解意义
展示多媒体:
把一张纸的平均分成2份,每份是这张纸的几分之几?
让学生自主思考解决这个问题。学生利用事先准备好的纸,先把纸平均分成7份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。在汇报反馈时,将学生的思维过程展示出来,即分、涂的过程。使每位学生都能在清晰地展示中分享他人的思维方法。通过思考操作学生达成共识:里有4个,平均分成2份,每份就是2个,是。接着让学生列出算式÷2=,在探究过程中,学生同时理解了分数除法的意义。
(三)大胆猜想,举例验证
学生通过操作,明白是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。这种方法是否具有普遍性呢?教师让每位学生举例验证,通过分一分,涂一涂证明结论。
【设计意***】大胆地猜想是一种非常好的数学思考方法,但还要经过科学的验证。科学的验证可不仅仅是一两道题就能得出结论,数十名同学会举例出数十道不同类型的分数除法算式。而其中有些算式是分子除以整数除不尽的。
(四)激发矛盾,再次探究
学生很快发现有些算式是无法用以上结论计算出来的,如÷3,分子4除以3是除不尽的。矛盾的引发,说明“分母不变,被除数的分子除以整数得到商的分子”这样的计算方法不具有普遍性。我引导学生再一次进行探究。为了便于全班统一交流,我选取学生举例中的一道典型算式进一步研究,如÷3,此时,先让学生动手分一分、涂一涂,然后再让他们进行小组交流。
【设计意***】苏霍姆林斯基曾说过:“引导学生能借助已有的经验去获取知识,这是最高的教学技巧之所在。”本环节的设计通过让学生动手操作、自主探究、合作交流等方式,体验了“探索——发现——验证——修改”的过程,通过一系列活动,使学生完成了知识的自我建构,同时也加深了学生对分数除以整数意义的'理解,符合学生的发展需要。
根据学生的小组讨论,学生发现把平均分成3份,每一份就是这张纸的。得到的算式是÷3=。此时我还引导学生发现:把平均分成3份,这其中的一份实际上就是的,而求一个数的几分之几可以用乘法来计算,算式是×=。比较两个算式,学生很快发现它们是相等的。由此,学生再一次得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。
【设计意***】这一环节,我引导学生根据乘法的意义来解决分数除法的计算方法,即将新知识转化成旧知识来解决,以旧学新是我们数学学习的一个重要的方法。这一环节主要也是学生自己发现,学生的主体地位得到尊重,从被动接受知识为主动探索,学生学习的过程变得精彩而不在枯燥无味。
(五)再次验证,分层练习
多媒体出示:
1、3/5÷3=;3/4÷4=;4/11÷5=;8/9÷6=;6/7÷8=;4/15÷12=;
2、()×9=1/3;8×()=;5×()=4/3;()×5=1/2;()×2=4/5;4×()=1/4;
3、找规律填数:8/9,4/9,(),1/9,1/18,()。
【设计意***】一个新的计算结论必须反复验证。让学生通过实际运算再次验证一个分数除以整数的意义和计算方法,学生在不断地思考与验证中,发现了第二种计算方法的普遍性,也深刻理解了分数除法的计算算理。
以上教学程序的设计遵循学生的认知规律和年龄特点,对计算进行探究式教学,也是新理念的挑战,学生是学习的主人,让学生自主探究,交流,让学生体验成功的喜悦。学生在教师的引导中操作、思考、解决问题,从而使学生获得了知识,发展了智力,培养了积极的学习情感,三维目标得到了有机的整合。
四、说板书设计
把一张纸的4/7平均分成2份,每份是这张纸的几分之几?
把一张纸的平均分成3份,每份是这张纸的几分之几?
除以一个整数(零除外)等于乘这个整数的倒数。
【设计意***】这样的板书设计集条理性、科学性、整体性和概括性为一体,有利于学生将教材的知识结构转化为学生头脑中的认知结构,能够体现出新旧知识的密切联系。
分数与除法的说课稿4
一、教材分析
本节课的教学设计力***体现“尊重学生,注重发展”,强调以学生为主体的学习活动对学生理解数学的重要性,本节教学内容分数除法中的解决问题,问题情境的数量关系表现为已知一个数的几分之几是多少,要求这个数,这样的的实际问题,与分数乘法中求一个数的几分之几是多少的实际问题,具有紧密的内在联系,即数量关系相同,区别在于已知数与未知数交换了位置,因此我有意识地采用多种活动方式,让学生理解知识的产生和发展的过程,尝到发现数学的滋味。
二、学情分析
在学习了分数乘法的基础上,孩子们对分数的运算有了一定的掌握,计算能力的日益提高,也使得孩子们有更深一步探求的欲望,因此,利用孩子们学习的积极性,开展本节课,培养学生发现问题、提出问题、分析问题和解决问题的能力,从而培养学生的基本技能。
三、教学目标
根据上述对教材内容和学生实际情况的分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:
基础知识目标:使学生学会掌握简单分数除法应用题的解法,能熟练地列方程解答这类应用题。
基本技能目标:进一步培养学生解决问题的能力,增强学生的应用意识。
基本思想目标:在充分利用教材情境引导学生学习分数除法的同时,渗透数形结合、建模、迁移等数学思想。
基本活动经验目标:激发学生学习数学的兴趣,让学生树立能够学好数学的信心。
四、教学重点与难点
根据教材内容和本班学生的实际情况我把弄清单位“1”的量,会分析题中的数量关系确定为本节的教学重点;把掌握分数除法应用题的解题方法确定为本节的教学难点。
五、教学方法
通过以下的方法让学生亲身体验合作的成功和愉悦。
1、观察发现法,通过观察电脑课件中国王的故事的演示,突出单位“1”这一重要知识点。
2、尝试发现法,让学生通过小组讨论的方式,互相讲解自己的方法和见解,自己去列式,在尝试的过程中发现问题。
3、动手操作法,通过动手画线段***,感受文字与***形的转化统一。
4、最后运用概括总结法让学生概括解决此类问题的方法。
六、教学过程
依据本节课教材知识结构及小学生认知发展的规律,实现“尊重学生,注重发展”的教学理念,围绕教学目标,我把本节课的程序安排如下四个环节。
第一环节:引导学生“说”
在这里我设计了一个学生感兴趣的问题:“国王给大臣出了一个有趣的数学问题,你能来解决吗?皇宫里的水池是有多少桶水组成的?”学生交流汇报,说一说自己解决这个问题的方法,通过这个问题实际的解决方法引出根据一个数的几分之几是多少求这个数的问题。从而引出例题。
第二环节:帮助学生“悟”
解决第一个题:小明的体重是多少千克?
分下面四个步骤进行。
1、理解题意,找出题目中所涉及到的量。
2、根据题目中的已知量,寻找其中的等量关系式。
3、尝试绘制线段***。
4、根据等量关系式尝试列试解答。
以上四个步骤都是在学生进行讨论交流的前提下,然后指名汇报,同时我利用课件演示出完整的过程,最后让学生概括出解决问题的思想方。
解决其他问题
如果说解决第一个问题由教师的扶到学生的悟,那么在解决这一问题时,我完全做到放,让学生通过自己刚才的发现,***去完成这一问题。
(设计意***:讨论交流、合作探究、自主发现的学习方式越来越引起教师的重视,这样的学习方式出现在课堂上,调动了学生的多种感观,为学生的全面发展,特别是学生个体人格的发展,创造了适宜的环境条件。)
第三环节:组织学生“用”
本节练习我以“谁是数学小能手”的形式,根据不同学生的不同特点,呈现了我精心设计的,层次不同的,由浅入深的四个问题情境。
(设计意***:学生在以上合作探究的基础上,已初步建立把文字转化成***形的思想方法,这几道题的设计目的是给学生提供难易适宜的思考空间,让每名学生都体验到学习数学成功的喜悦。)
第四环节:指导学生“想”
通过这节课的分析与讲解,请学生思考我们遇到此类的问题该如何入手,该找出其中哪些有用的信息,该怎样发现其中的问题,该如何进行分析和解决。
分数与除法的说课稿5
一、说教材:
本课是新世纪版《义务教育课程标准实验教科书》五年级下册第25页-26页的内容。这节课的知识基础是分数乘法的意义和计算方法以及倒数的认识。教材中呈现了两个问题,这两个问题的共同点是都把4/7平均分,第(1)题是平均分成2份,第(2)题是平均分成3份,第(1)题的算式是4/7÷2,被除数4/7的分子式能被除数整除的,而第(2)题的算式是4/7÷3,被除数4/7的分子是不能被3整除的。无论哪一种方法,目的都是就是让学生在涂一涂、算一算的过程中,借助***形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。
二、说教学目标:
通过分析,我认为这节课应该达到以下的教学目标:
1、在具体情境中,借助操作活动,探索并理解分数除以整数的意义。
2、探索分数除以整数的计算方法,并能正确计算。
3、在分数除法算理探究中,渗透转化思想。
三、教学重点:
理解分数除法的意义,掌握分数除以整数的计算方法。
四、教学难点:
分数除以整数计算法则……
五、教学过程:
一、旧知复习,蕴伏铺垫
(1)求下列各组数的倒数。
(2)把2张长方形的纸平均分成2份,每份是多少?把1张长方形的纸平均分成2份,每份是多少?学生理解题意列出算式,并说出每个算式表示的意义。
二、感知分数除法的意义
课件出示:把一张长方形纸的4/7平均分成2份,每份是这张纸的几分之几?
1、提问:4/7表示什么意思?(是把单位1平均分成7份,取其中的4份)
2、把4/7平均分成2份,也就是把***上的哪一个部分平均分成2份?得多少呢?
3、谁来说说你是怎样想的?
学生可能会回答:
1)把这4份平均分成2份,每份是2,占这张纸的2/7。
2)4/7里有4个1/7,平均分成2份,每份就是2个1/7,是2/7。
4、怎样列式计算呢?(板书:4/7÷2=)到底应该怎样计算分数除法呢?下面请同学们和老师一齐来探索分数除法的计算方法。(板书课题:分数除法(一))
三、大胆猜想,举例验证K12教育空间
1、提问:想一想,如果不看***,你会计算4/7÷2=2/7吗?你能提出你的大胆猜想吗?
学生可能会得到“分母不变,被除数的分子除以整数得到商的分子”的结论,举例验证。
师:大胆地猜想是一种非常好的数学思考方法,但还要经过科学的验证。
2、课件出示:把一张长方形纸的4/7平均分成3份,每份是这张纸的几分之几?
师:可以列出算式吗?
四、激发矛盾,再次探究
1、提问:4/7÷3这道题与刚才那几道有什么不同?(分数的分子不能被除数整除)
如果要算4/7÷3刚才的方法还能用吗?
师:看来我们要换一个思维方式探索能普遍运用的方法。
2、提问:把这4份平均分成3份,每份是这张纸的几分之几呢?请同学们用课前准备的***形分一分、涂一涂。涂好后在四人小组内交流一下怎样分。
3、你是怎样分的?
(把4/7平均分成3份,每一份就是这张纸的4/21。)
4、把4/7平均分成3份,这其中的一份实际上就是4/7的几分之几?求4/7的1/3我们可以用什么方法来计算?(板书)
5、对照这两道算式,你有什么想法吗?
师:把4/7平均分成3份,就相当于求4/7的1/3,结果都是4/21。因此,中间我们可以用等号连起来。你们看,这样,原来的除法算式就转化成了什么算式的?什么变了?什么没变?这样有什么作用?
师:分数除以整数,就等于分数乘以整数的倒数。
6、小结:同学们真能干!会把新知识转化成旧知识来解决,以旧学新是我们数学学习的一个重要的方法。
小结:这就是分数除以整数的常用的方法,谁来说一说这种算法是怎样的?那么0能不能作除数呢?所以,这里还要补上一个条件(0除外)。
7、在今后的分数除法计算中,我们常用这种方法。因为无论分数的分子能否被整数都可以进行计算,不受什么条件限制,它的应用更普遍。当然,分数的分子如果正好能被整数整除时,我们也可以应用第一种算法计算,具体问题具体分析,做题时要合理灵活地选择计算方法。
五、巩固提升
1、引导学生完成填一填,想一想。(学生***完成,全班交流。)
2、引导学生完成试一试。
六:课堂总结:
谈一谈这一节课你有哪些收获?
转载请注明出处记得学习 » 分数与除法的说课稿精选