小升初数学试卷及答案
在学习、工作生活中,我们最离不开的就是试卷了,试卷是纸张答题,在纸张有考试组织者检测考试者学习情况而设定在规定时间内完成的试卷。一份好的试卷都是什么样子的呢?下面是精心整理的小升初数学试卷及答案,仅供参考,欢迎大家阅读。
小升初数学试卷及答案1
一、填空题:(每空1分,共20分)
1、一个九位数,最高位上的数字是最大的一位数,十万位和百位上的数字都是1,万位上的数字是5,其余各位上的数字都是0,这个数写作_________。
读作,省略“万”后面的尾数记作约_________。
2、5吨40千克=_________吨,2.15小时=_________小时_________分。
3、4÷=0.8=_________%=_________成。
4、A=2×2×3,B=2×2×2×2,A和B的最大公约数是_________,最小公倍数是_________。
5、把2米长的钢管平均锯成5段,每段是这根钢管的`_________,每段长为_________。
6、五个数3.14、1、π、125%和中,最大的是_________,相等的两个数是和_________。
7、如果0.6x=y(x不等于0),那么x:y=_________,y比x少百分之_________。
8、一个圆的周长是31.4厘米,以它的一条直径为底边,在圆内画一个最大的三角形,这个三角形的面积是_________平方厘米。(π取3.14)。
9、完成一项工程,原计划要10天,实际每天工作效率提高25%,实际用_________天可以完成这项工程。
二、选择题:(把正确的答案的序号填在括号里,每小题1分,共5分)
10、组成角的两条边是_________。
A、直线B、射线C、斜线
11、如果把两个数的积由265.4改变为2.654,那么只需把其中一个因数_________。
A、缩小10倍B、扩大100倍C、缩小100倍
12、一个真分数的分子、分母都加上5,所得分数的值比原分数的值_________。
A、***、小C、不变
13、在比例尺是1:1000000的***纸上,量得一块长方形地的长是4厘米,宽2。5厘米,这块地的实际面积是_________。
A、1000平方千米B、100平方千米C、10平方千米
14、利用半径为5厘米的圆形纸片剪一个面积最大的正方形,此正方形的面积为_________。
A、60平方厘米B、55平方厘米C、50平方厘米
三、判断题:(对的打“√”,错的打“×”,每小题1分,共5分)
15、对于所有的自然数来说,不是质数就是合数。()
16、2600÷500=26÷5=5……1()
17、时间不变,生产每个零件的时间和生产零件的数量成反比例关系。()
18、某班在达标测试中,未达标人数是达标人数,这个班学生的达标率是96%。()
19、如果一个三角形与一个平行四边形面积相等,高也相等,那么这个平行四边形的底是三角形底的一半。()
四、列式计算:
20、直接写出得数(每小题1分,共8分)
①529+198=②305-199=③2.05×4=
④8×12.5%=⑤=⑥=
⑦0.68++0.32=⑧÷+0.75×10=
21、用简便方法计算(每小题4分,共8分)
①25×1.25×32②(3.75-2.9+2.25)÷31%
22、计算(每小题4分,共16分)
①5400-2940÷28×50②(20.2×0.4+7.88)÷4.2
③÷+④10÷[-(÷+)]
23、列式计算(每小题4分,共8分)
①0.8的减去0.75除的商,结果是多少?
②一个数的与这个数的30%的和是12.2,求这个数。
五、应用题:(每小题5分,共30分)
24、秦杨水泥厂去年上半年生产水泥4.25万吨,下半年前5个月的产量就和上半年的产量同样多,照这样计算,去年全年的水泥产量可达多少万吨?
25、某电视机厂去年生产29寸彩电3.5万台,29寸彩电台数的30%正好是34寸彩电台数的四分之一,生产34寸彩电多少万台?
26、有一只盛满水的长方体玻璃缸内,浸没着一段底面半径是1分米的圆柱形钢锭,当钢锭从玻璃缸内取出时,缸内的水面下降了0.5分米,已知这个长方体玻璃缸内的底面积是31.4平方分米。求这段圆柱体钢锭的长是多少分米?(π取3.14)
27、一堆煤,原计划每天烧750千克,可以烧24天;实际每天只烧煤600千克,这堆煤实际可以多烧多少天?
28、小明读一本故事书,第一天读了24页,占全书的,第二天读了全书的37.5%,还剩多少页没有读?
29、生产一批零件,甲每小时可做18个,乙单独做要12小时完成。现在由甲乙二人
合做,完成任务时,甲乙生产零件的数量之比是3:5,甲一共生产零件多少个?
小升初数学试卷答案解析
一、填空题:(每空1分,共20分)
1、900150100;九亿零十五万零一百;90015万2、5.04;2;93、5;80;8(或八)
4、4;485、;米6、π;125%;7、5:3;208、259、8
二、选择题:(每空1分,共20分)10~14:BCAAC
三、判断题:(每空1分,共20分)15~19:××√×√
四、列式计算:
20、(每空1分,共20分)
①727②106③8.2④1⑤⑥⑦⑧12
21、(每小题4分,共8分)
①原式=(25×4)×(1.25×8)=100×10=1000
②原式=(6-2.9)÷0.31=3.1÷0.31=10
22、(每小题4分,共16分)
①原式=5400-105×50=5400-5250=150
②原式=(8.8+7.88)÷4.2=15.96÷4.2=3.8
③原式=×+=+=1④原式=10÷=10÷=37.5
23、(每小题4分,共8分)
①0.8×-÷0.75=×-×=②12.2÷(+30%)=12.2÷=×=14
五、应用题:(每小题5分,共30分)
24、4.25+4.25÷5×6=9.35(万吨)答:略
25、3.5×30%÷=4.2(万台)答:略
26、31.4×0.5÷(3.14×12)=5(分米)答:略
27、750×24÷600-24=6(天)答:略
28、24÷×(1--37.5%)=51(页)答:略
29、18÷3×5×12=360(个)……零件总数
360×=135(个)……甲生产零件数答:略
小升初数学试卷及答案2
A级基础题
1.分式方程5x+3=2x的解是( )
A.x=2 B.x=1 C.x=12 D.x=-2
2.下面是四位同学解方程2x-1+x1-x=1过程中去分母的一步,其中正确的是( )
A.2+x=x-1 B.2-x=1 C.2+x=1-x D.2-x=x-1
3.分式方程10020+v=6020-v的解是( )
A.v=-20 B.v=5 C.v=-5 D.v=20
4.甲车行驶30千米与乙车行驶40千米所用的时间相同.已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/时,依题意列方程正确的是( )
A.30x=40x-15 B.30x-15=40x C.30x=40x+15 D.30x+15=40x
5.若代数式2x-1-1的值为零,则x=________.
6.今年6月1日起,国家实施了《中央财***补贴条例》,支持高效节能电器的推广使用.某款定速空调在条例实施后,每购买一台,客户可获财***补贴200元,若同样用1万元所购买的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为 ______________元.
7.解方程:6x-2=xx+3-1.
8.当x为何值时,分式3-x2-x的值比分式1x-2的值大3?
9.(2013年广东珠海文园中学一模)某工厂加工某种产品,机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的37倍,求手工每小时加工产品的数量.
B级中等题
10.若关于x的分式方程2x-ax-1=1的解为正数,那么字母a的取值范围是__________.
11.若关于x的方程axx-2=4x-2+1无解,则a的值是__________.
12.(2013年广东中山一模)中山市某施工队负责修建1800米的绿道.为了尽量减少施工对周边环境的.影响,该队提高了施工效率,实际工作效率比原计划每天提高了20%,结果提前两天完成.求实际平均每天修绿道的长度?
C级拔尖题
13. 由于受到手机更新换代的影响,某手机店经销的iPhone4手机二月售价比一月每台降价500元.如果卖出相同数量的iPhone4手机,那么一月销售额为9万元,二月销售额只有8万元.
(1)一月iPhone4手机每台售价为多少元?
(2)为了提高利润,该店计划三月购进iPhone4S手机销售,已知iPhone4每台进价为3500元,iPhone4S每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?
(3)该店计划4月对iPhone4的尾货进行销售,决定在二月售价基础上每售出一台iPhone4手机再返还顾客现金a元,而iPhone4S按销售价4400元销售,如要使(2)中所有方案获利相同,a应取何值?
参考答案
1.A 2.D 3.B 4.C 5.3
6.2200 解析:设条例实施前此款空调的售价为x元,由题意列方程,得10 000x(1+10%)=10 000x-200,解得x=2200元.
7.解:方程两边同乘以(x-2)(x+3),
得6(x+3)=x(x-2)-(x-2)(x+3),
化简,得9x=-12,
解得x=-43.
经检验,x=-43是原方程的解.
8.解:由题意列方程,得3-x2-x-1x-2=3,
解得x=1.
经检验x=1是原方程的根.
9.解:设手工每小时加工产品的数量为x件,
则由题意,得18002x+9=1800x37
解得x=27.
经检验,x=27符合题意且符合实际.
答:手工每小时加工产品的数量是27件.
10.a>1且a≠2 11.2或1
12.解:设原计划平均每天修绿道的长度为x米,
则1800x-18001+20%x=2,
解得x=150.
经检验:x=150是原方程的解,且符合实际.
150×1.2=180(米).
答:实际平均每天修绿道的长度为180米.
13.解:(1)设二月iPhone4手机每台售价为x元,
由题意,得90 000x+500=80 000x,
解得x=4000.
经检验:x=4000是此方程的根.x+500=4500.
故一月iPhone4手机每台售价为4500元.
(2)设购进iPhone4手机m台,则购进iPhone4S手机(20-m)台.由题意,得
74 000≤3500m+4000(20-m) ≤76 000,
解得8≤m≤12 ,因为m只能取整数,
m取8,9,10,11,12,共有5种进货方案.
(3)设总获利为w元,则w=(500-a)m+400(20-m)=(100-a)m+8000,
当a=100时,(2)中所有方案获利相同.
转载请注明出处记得学习 » 小升初数学试卷及答案