平面向量的加法教案
作为一名为他人授业解惑的教育工作者,通常需要准备好一份教案,教案是备课向课堂教学转化的关节点。那么应当如何写教案呢?以下是帮大家整理的平面向量的加法教案,欢迎阅读,希望大家能够喜欢。
平面向量的加法教案 篇1
教材:
向量
目的:
要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与已知向量相等,根据*形判定向量是否平行、共线、相等。
过程:
一、开场白:本P93(略)
实例:老鼠由A向西北逃窜,猫在B处向东追去,
问:猫能否追到老鼠?(画*)
结论:猫的速度再快也没用,因为方向错了。
二、提出题:平面向量
1.意义:既有大小又有方向的量叫向量。例:力、速度、加速度、冲量等
注意:1数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小;
向量有方向,大小,双重性,不能比较大小。
2从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。
2.向量的表示方法:
1几何表示法:点—射线
有向线段——具有一定方向的线段
有向线段的三要素:起点、方向、长度
记作(注意起讫)
2字母表示法: 可表示为 (印刷时用黑体字)
P95 例 用1cm表示5n mail(海里)
3.模的概念:向量 的大小——长度称为向量的模。
记作: 模是可以比较大小的
4.两个特殊的向量:
1零向量——长度(模)为0的向量,记作 。 的方向是任意的。
注意 与0的区别
2单位向量——长度(模)为1个单位长度的向量叫做单位向量。
例:温度有零上零下之分,“温度”是否向量?
答:不是。因为零上零下也只是大小之分。
例: 与 是否同一向量?
答:不是同一向量。
例:有几个单位向量?单位向量的'大小是否相等?单位向量是否都相等?
答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。
三、向量间的关系:
1.平行向量:方向相同或相反的非零向量叫做平行向量。
记作: ∥ ∥
规定: 与任一向量平行
2.相等向量:长度相等且方向相同的向量叫做相等向量。
记作: =
规定: =
任两相等的非零向量都可用一有向线段表示,与起点无关。
3.共线向量:任一组平行向量都可移到同一条直线上 ,
所以平行向量也叫共线向量。
例:(P95)略
变式一:与向量长度相等的向量有多少个?(11个)
变式二:是否存在与向量长度相等、方向相反的向量?(存在)
变式三:与向量共线的向量有哪些?
四、小结:
五、作业:
P96 练习 习题5.1
平面向量的加法教案 篇2
目的:
通过练习使学生对实数与积,两个向量共线的充要条件,平面向量的基本定理有更深刻的理解,并能用来解决一些简单的几何问题。
过程:
一、复习:
1.实数与向量的积(强调:“模”与“方向”两点)
2.三个运算定律(结合律,第一分配律,第二分配律)
3.向量共线的充要条件
4.平面向量的基本定理(定理的本身及其实质)
二、例题
1.当λZ时,验证:λ(+)=λ+λ
证:当λ=0时,左边=0(+)=右边=0+0=分配律成立
当λ为正整数时,令λ=n,则有:
n(+)=(+)+(+)+…+(+)
=++…+++++…+=n+n
即λ为正整数时,分配律成立
当为负整数时,令λ=n(n为正整数),有:
n(+)=n[(+)]=n[()+()]=n()+n()=n+(n)=nn
分配律仍成立
综上所述,当λ为整数时,λ(+)=λ+λ恒成立。
2.1kg的重物在两根细绳的支持下,处于平衡状态(如*),已知两细绳与水平线分别成30,60角,问两细绳各受到多大的力?
解:将重力在两根细绳方向上分解,两细绳间夹角为90
1(kg)P1OP=60P2OP=30
∴cos60=1=0.5(kg)
cos30=1=0.87(kg)
即两根细绳上承受的拉力分别为0.5kg和0.87kg。
转载请注明出处记得学习 » 平面向量的加法运算教案